f; UM1891
” life.augmented User manual

Getting started with STM32CubeF7 firmware package
for STM32F7 Series

Introduction

The STMCube ™ initiative was originated by STMicroelectronics to ease developers life by
reducing development efforts, time and cost. STM32Cube covers the STM32 portfolio.
The STM32Cube Version 1.x includes:

e The STM32CubeMX, a graphical software configuration tool that allows to generate C
initialization code using graphical wizards

e A comprehensive embedded software platform, delivered per series (such as
STM32CubeF7 for STM32F7 Series)

— The STM32Cube HAL, an STM32 abstraction layer embedded software, ensuring
maximized portability across the STM32 portfolio

— A consistent set of middleware components such as RTOS, USB, TCP/IP and
graphics
— All embedded software utilities coming with a full set of examples.

This user manual describes how to get started with the STM32CubeF7 firmware package.
Section 1 describes the main features of the STM32CubeF7 firmware, part of the
STMCube ™ initiative.

Section 2 and Section 3 provide an overview of the STM32CubeF7 architecture and
firmware package structure.

9

April 2016 DocID027808 Rev 3 1/21

www.st.com

http://www.st.com

Contents UM1891

Contents
1 STM32CubeF7 mainfeatures 5
2 STM32CubeF7 architecture overview 7
3 STM32CubeF7 firmware package overview 10
3.1 Supported STM32F7 Series devicesand hardware 10
3.2 Firmware package overview i 12
4 Gettingstarted i i 15
4.1 Running your firstexample 15
4.2 Developing your own application, 16
4.3 Using STM32CubeMX to generate the initialization Ccode 18
4.4 Getting STM32CubeF7 releaseupdates 18
441 Installing and running the STM32CubeUpdater program 18
5 2 O 19
6 Revision history i ittt 20
2/21 DoclD027808 Rev 3 Kys

UM1891 List of tables

List of tables

Table 1. Macros for STM32F7 Series.ot 10
Table 2. Evaluation and discovery boards for STM32F7 Series. 11
Table 3. Number of examples available foreachboard 13
Table 4. Document revision history 20
"_l DoclD027808 Rev 3 3/21

List of figures UM1891

List of figures

Figure 1. STM32CubeF7 firmware components 6
Figure 2. STM32CubeF7 firmware architecture. 7
Figure 3. STM32CubeF7 firmware package structure. 12
Figure 4. STM32CubeF7 example overview e e 14

4/21 DocID027808 Rev 3

3

UM1891

STM32CubeF7 main features

3

STM32CubeF7 main features

STM32CubeF7 gathers together, in a single package, all the generic embedded software
components required to develop an application on STM32F7 microcontrollers. In line with
the STMCube ™ initiative, this set of components is highly portable, not only within the
STM32F7 Series but also to other STM32 Series.

STM32CubeF7 is fully compatible with STM32CubeMX code generator that allows the user
to generate initialization code. The package includes a low level hardware abstraction layer
(HAL) that covers the microcontroller hardware, together with an extensive set of examples
running on STMicroelectronics boards. The HAL is available in an open-source BSD license
for user convenience.

The STM32CubeF7 package also contains a set of middleware components with the
corresponding examples. They come with very permissive license terms:
e Full USB Host and Device stack supporting many classes:
— Host Classes: HID, MSC, CDC, Audio, MTP
— Device Classes: HID, MSC, CDC, Audio, DFU
e Graphics:

— STemWin, a professional graphical stack solution available in binary format and
based on the emWin solution from ST's partner SEGGER

— LibJPEG, an open source implementation on STM32 for JPEG images encoding
and decoding.

e CMSIS-RTOS implementation with FreeRTOS open source solution
e FAT File system based on open source FatFS solution

e TCP/IP stack based on open source LwlIP solution

e SSL/TLS secure layer based on open source PolarSSL

A demonstration implementing all these middleware components is also provided in the
STM32CubeF7 package.

DocID027808 Rev 3 5/21

STM32CubeF7 main features UM1891

6/21

Figure 1. STM32CubeF7 firmware components

Evaluation boards ||| Discovery boards STI\/tI):i)Za:\(le;cleo Dedicated boards

Utilities

USB Host) FAT file
TCP/IP & Device system CMSIS

Hardware Abstraction Layer (HAL) Board Support Package (BSP)

|STM32FO| |STM32F1 | |STM32F2 | | STM32F3| |STM32F4| |STM32F7| |STM32L1 | |STM32L0|

Hardware

MSv40434V1

3

DocID027808 Rev 3

UM1891 STM32CubeF7 architecture overview

2 STM32CubeF7 architecture overview

The STM32CubeF7 firmware solution is built around three independent levels that can
easily interact with each other as described in Figure 2.

Figure 2. STM32CubeF7 firmware architecture

Level 2 Eval board demonstration

Applications

Level 1 \/ @

Library and protocol based components (FatFS, FreeRTOS, USB
Host, USB Device, Ethernet...)

Examples

11

BSP drivers

Level 0 . .
HAL peripheral drivers

Low level Driver Core (optional)

HAL

MSv37580V1

Level 0: This level is divided into three sub-layers:

e Board Support Package (BSP): this layer offers a set of APIs relative to the hardware
components in the hardware boards (Audio codec, I/O expander, Touchscreen, SRAM
driver, LCD drivers. etc...). It is composed of two parts:

— Component: this is the driver related to the external device on the board and not
related to the STM32, the component driver provides specific APIs to the BSP
driver external components and can be ported to any board.

— BSP driver: it permits to link the component driver to a specific board and provides
a set of user-friendly APIs. The APl naming rule is BSP_FUNCT_Action(): ex.
BSP_LED_Init(),BSP_LED_On()

It is based on a modular architecture allowing an easy porting on any hardware by just
implementing the low level routines.

e Hardware Abstraction Layer (HAL): this layer provides the low level drivers and the
hardware interfacing methods to interact with the upper layers (application, libraries
and stacks). It provides generic, multi instance and function-oriented APIs which
simplify the user application implementation by providing ready-to-use processes. As
example, for the communication peripherals (125, UART...) it includes APlIs allowing to

3

DocID027808 Rev 3 7/21

STM32CubeF7 architecture overview UM1891

8/21

initialize and configure the peripheral, manage data transfer based on polling, interrupt
or DMA process, and handle communication errors that may raise during
communication. The HAL Drivers APIs are split in two categories:

— Generic APIs which provide common and generic functions to all the STM32
Series

— Extension APIs which provide specific and customized functions for a specific
family or a specific part number.

Basic peripheral usage examples: this layer contains the examples of the basic

operation of the STM32F7 peripherals using only the HAL and BSP resources.

Level 1: This level is divided into two sub-layers:

Middleware components: a set of Libraries covering USB Host and Device Libraries,
STemWin, LibJPEG, FreeRTOS, FatFS, LwlIP, and PolarSSL. Horizontal interactions
between the components of this layer are performed directly by calling the feature APls
while the vertical interaction with the low level drivers is done through specific callbacks
and static macros implemented in the library system call interface. As example, the
FatFs implements the disk I/O driver to access microSD drive or the USB Mass Storage
Class.

The main features of each middleware component are as follows:
USB Host and Device Libraries
— Several USB classes supported (Mass-Storage, HID, CDC, DFU, AUDIO, MTP)

— Support of multi packet transfer features: allows sending big amounts of data
without splitting them into max packet size transfers.

— Use of configuration files to change the core and the library configuration without
changing the library code (Read Only).

— 32-bit aligned data structures to handle DMA-based transfer in High-speed
modes.

— Support of multi USB OTG core instances from user level through configuration
file (that allows an operation with more than one USB host/device peripheral).

— RTOS and Standalone operation

— The link with low-level driver through an abstraction layer using the configuration
file to avoid any dependency between the Library and the low-level drivers.

STemWin Graphical stack

— Professional grade solution for GUI development based on Segger’'s emWin
solution

— Optimized display drivers

— Software tools for code generation and bitmap editing (STemWin Builder...)
LibJPEG

— Open source standard

— C implementation for JPEG image encoding and decoding.

FreeRTOS

— Open source standard

— CMSIS compatibility layer

— Tickless operation during low-power mode

— Integration with all STM32Cube middleware modules

3

DocID027808 Rev 3

UM1891

STM32CubeF7 architecture overview

3

FAT File system

FATFS FAT open source library

Long file name support

Dynamic multi-drive support

RTOS and standalone operation

Examples with microSD and USB host Mass-storage class

LwIP TCP/IP stack

Open source standard
RTOS and standalone operation

e Examples based on the middleware components: each middleware component
comes with one or more examples (called also Applications) showing how to use it.
Integration examples that use several middleware components are provided as well.

Level 2: This level is composed of a single layer which is a global real-time and graphical
demonstration based on the middleware service layer, the low level abstraction layer and
the basic peripheral usage applications for board-based features.

DocID027808 Rev 3 9/21

STM32CubeF7 firmware package overview UM1891

3 STM32CubeF7 firmware package overview

3.1 Supported STM32F7 Series devices and hardware

STM32Cube offers a highly portable Hardware Abstraction Layer (HAL) built around a
generic and modular architecture. It allows the upper layers, the middleware and
application, to implement its functions without knowing, in-depth, the MCU used. This
improves the library code re-usability and guarantees an easy portability from one device to
another.

The STM32CubeF7 offers a full support for all the STM32F7 Series devices. The user only
needs to define the right macro in stm32f7xx.h.

Table 1 lists which macro to define depending on the used STM32F7 Series device. This
macro can also be defined in the compiler preprocessor.

Table 1. Macros for STM32F7 Series

Macro defined

in stm32f7xx.h STM32F7 Series devices

STM32F756xx | STM32F756VG, STM32F756ZG, STM32F7561G, STM32F756BG, STM32F756NG

STM32F746VE, STM32F746VG, STM32F746ZE, STM32F746ZG, STM32F746IE,
STM32F746xx | STM32F746I1G, STM32F746BE, STM32F746BG, STM32F746NE,
STM32F746NG

STM32F745VE, STM32F745VG, STM32F745ZG, STM32F745ZE, STM32F745IE,
STM32F7451G

STM32F765BI, STM32F765BG, STM32F765NI, STM32F765NG, STM32F765I1,
STM32F7651G, STM32F765Z1,STM32F765Z2G, STM32F765VI, STM32F765VG

STM32F767BG, STM32F767BI, STM32F767IG, STM32F76711, STM32F767NG,
STM32F767xx | STM32F767NI, STM32F767VG, STM32F767VI, STM32F7672G, STM32F767ZI,
STM32F768Al

STM32F769AG, STM32F769AI, STM32F769BG, STM32F769BI, STM32F769IG,
STM32F769Il, STM32F769NG, STM32F769NI

STM32F777BI, STM32F7771l, STM32F777NI, STM32F777VI, STM32F777ZI,
STM32F778Al

STM32F779xx | STM32F779Al, STM32F779BI, STM32F779ll, STM32F779NI

STM32F745xx

STM32F765xx

STM32F769xx

STM32F777xx

STM32CubeF7 features a rich set of examples and demonstrations at all levels making it
easy to understand and use any HAL driver and/or middleware components. These
examples can be run on any of the STMicroelectronics boards as listed in Table 2:

3

10/21 DocID027808 Rev 3

UM1891 STM32CubeF7 firmware package overview

Table 2. Evaluation and discovery boards for STM32F7 Series

Board STM32F7 devices supported
STM327x6G_EVAL(") STM32F746xx and STM32F756xx
STM32F746G-Discovery STM32F746NG
STM32F746ZG-Nucleo STM32F746ZG
STM32F7x91_EVAL®@) STM32F779xx and STM32F769xx
STM32F769I-Discovery STM32F769NI
STM32F767ZI-Nucleo STM32F767ZI

1. STM327x6G_EVAL refers to STM32746G_EVAL and STM32756G_EVAL evaluation boards.
2. STM32F7x9l_EVAL refers to STM32F7691_EVAL and STM32F7791_EVAL evaluation boards

The STM32CubeF7 firmware can run on any compatible hardware. Simply update the BSP
drivers to port the provided examples on the user board if its hardware features are the
same (e.g. LED, LCD display, pushbuttons).

3

DocID027808 Rev 3 11/21

STM32CubeF7 firmware package overview

UM1891

3.2 Firmware package overview

The STM32CubeF7 firmware solution is provided in a single zip package with the structure

shown in Figure 3.

Figure 3. STM32CubeF7 firmware package structure

Contains STM32F7xx
CMSIS files that
defines Peripheral's
registers declarations,
bits definition and the
address mapping

USB Host Library
supporting both OTG
FS and HS cores and

4 STM32Cube FW_F7_VXY.Z
. _htmresc

- |, Documentation

4 | Drivers

- Components
, STM32T756G_EVAL
| CMSIS

4 Middlewares
a4l ST
© bl STemWin
| STM32_Audio
¢ el 5TM32_USB_Device_Library
% STM32_USB_Host_Library

L 4- || Third_Party

4. BSP «—

BSP drivers for the
supported boards

o | STM32FT30 HAL_Driver |

STM32F7xx HAL
drivers for all
modules

USB Device Library
supporting both OTG
FS and HS cores

offering the following

classes: HID, MSC, -1 FatfFs and ot_"fering the .
CDC, Audio, and .. | FreeRTOS following classes:
MTP .. LibJPEG HID,_ MSC, CDC,
s Audio, and DFU
- LwlIP
» - 4 PolarssL
4. Projects
/ - STM32756G_EVAL
4. Utilities
.., CPU
Set of examples 5 [l Fonts
organized by board y Log
and provided with v .)
preconfigured bl Media
projects. - 1 PC_Software
= package.xml

< | Release_MNotes.html

MSv37582V1

For each board, a set of examples are provided with preconfigured projects for EWARM,
MDK-ARM and SW4STM32 toolchains.

Figure 4 shows the project structure for the STM327x6G_EVAL board. The structure is
identical for other boards.

The examples are classified depending on the STM32Cube level they apply to, and are
named as follows:

e Examples in level 0 are called Examples, that use HAL drivers without any middleware
component

e Examples in level 1 are called Applications, that provide typical use cases of each
middleware component

e Examples in level 2 are called Demonstration, that implement all the HAL, BSP and
middleware components

12/21 DoclD027808 Rev 3 ‘Yl

UM1891

STM32CubeF7 firmware package overview

3

A template project is provided to allow to quickly build any firmware application on a given

board.

All examples have the same structure,
¢ \Inc folder that contains all header files
e \Src folder for the sources code

e \EWARM, \MDK-ARM and \SW4STM32 folders contain the preconfigured project for

each toolchain.

e readme.txt describing the example behavior and the environment required to make it

work

Table 3 provides the number of examples, applications and demonstrations available for

each board.
Table 3. Number of examples available for each board
Board Examples Applications Demonstration

STM327x6G_EVAL 93 62 1
STM32F746G-Discovery 32 26 1
STM32F746ZG-Nucleo 28 8 1
STM32F7x91_EVAL 121 48 1
STM32F769I-Discovery 31 12 1
STM32F767ZI-Nucleo 41 8 1

DocID027808 Rev 3

13/21

STM32CubeF7 firmware package overview

UM1891

14/21

Figure 4. STM32CubeF7 example overview

4 - | Projects
4), STM32756G_EVAL
4. |, Applications
s | Audio
. Camera
. Display
. FatFs
. FreeRTOS
, LibJPEG
, LwiIP
. PolarSSL
. STemWin
. USB_Device
. USB_Host
..... , Demonstration
4. |, Examples
, ADC
., BSP
. CAN
. CEC
. Cortex
. CRC
. CRYP
, DAC
. DCMI
. DMA
. DMA2ZD
. FLASH
. FMC
, HAL
, HASH
, I2C
, IWDG
, LTDC
, QSPI
, RCC
. RNG
. RTC
, SAI
. UART
. WWDG
4 - |, Templates
. EWARM
. Inc
. MDK-ARM
. Src
. SW4STM32

DoclD027808 Rev 3

3

UM1891

Getting started

4

4.1

3

Getting started

Running your first example

This section explains how simple it is to run a first example with STM32CubeF7. It uses as
an illustration the generation of a simple LED toggling example running on the
STM327x6G_EVAL board:

1.

oo s wN

After downloading the STM32CubeF7 firmware package, unzip it into a directory of
your choice, make sure not to modify the package structure shown in Figure 3.

Browse to \Projects\STM327x6G_EVAL\Examples.
Open \GPIO, then the \GPIO_EXT] folder.

Open the project with your preferred toolchain.

Rebuild all files and load your image into target memory.

Run the example: each time you press the Tamper push-button, the LED1 will toggle
(for more details, refer to the example readme file).

The following section provides a quick overview on how to open, build and run an
example with the supported toolchains.

EWARM

— Under the example folder, open the \EWARM subfolder
— Open the Project.eww workspace(a)

— Rebuild all files: Project->Rebuild all

— Load project image: Project->Debug

— Run program: Debug->Go(F5)

MDK-ARM

— Under the example folder, open the \MDK-ARM subfolder
— Open the Project.uvproj workspace(a)

— Rebuild all files: Project->Rebuild all target files

— Load project image: Debug->Start/Stop Debug Session
— Run program: Debug->Run (F5)

SW4STM32

— Open the SW4STM32 toolchain

— Click on File->Switch Workspace->Other and browse to the SW4STM32
workspace directory

— Click on File->Import, select General->'Existing Projects into Workspace' and then
click “Next”.

— Browse to the SW4STM32 workspace directory, select the project

— Rebuild all project files: Select the project in the “Project explorer” window then
click on Project->build project menu.

a.

The workspace name may change from one example to another.

DocID027808 Rev 3 15/21

Getting started

UM1891

4.2

Note:

16/21

Developing your own application

This section describes the required steps needed to create your own application using
STM32CubeF7.

1.

Create your project: to create a new project you can either start from the Template
project provided for each board under \Projects\<STM32xx_xxx>\Templates or from
any available project under \Projects\<sSTM32xx_xxx>\Examples or
\Projects\<STM32xx_xxx>\Applications (<STM32xx_xxx> refers to the board name, ex.
STM327x6G_EVAL).

The Template project provides an empty main loop function, it is a good starting point to
get familiar with the project settings for STM32CubeF7. The template has the following
characteristics:

a) It contains sources of the HAL, CMSIS and BSP drivers which are the minimum
required components to develop code for a given board

b) It contains the include paths for all the firmware components

c) It defines the STM32F7 device supported, allowing to have the right configuration
for the CMSIS and HAL drivers

d) It provides ready-to-use user files preconfigured as follows:
- HAL is initialized
- SysTick ISR implemented for HAL_Delay() purpose
- System clock is configured with the maximum frequency of the device

When copying an existing project to another location, make sure to update the include
paths.

2.

Add the necessary middleware to your project (optional): the available middleware
stacks are: USB Host and Device Libraries, STemWin, LibJPEG, FreeRTOS, FatFS,
LwlIP, and PolarSSL. To find out which source files you need to add to the project files
list, refer to the documentation provided for each middleware, you may also have a look
at the applications available under \Projects\STM32xx_xxx\Applications\<MW _Stack>
(<MW_Stack> refers to the Middleware stack, for example USB_Device) to get a better
idea of the source files to be added and the include paths.

Configure the firmware components: the HAL and middleware components offer a
set of build time configuration options using macros declared with “#define” in a header
file. A template configuration file is provided within each component, it has to be copied
to the project folder (usually the configuration file is named xxx_conf_template.h. The
word “_template” needs to be removed when copying it to the project folder). The
configuration file provides enough information to know the effect of each configuration
option. More detailed information is available in the documentation provided for each
component.

Start the HAL Library: after jumping to the main program, the application code needs

to call HAL_Init() API to initialize the HAL Library, which does the following:

a) Configure the Flash prefetch, and instruction cache through ART accelerator.

b) Configure the SysTick to generate an interrupt every 1ms. The SysTick is clocked
by the HSI (default configuration after reset)

c) Sets NVIC Group Priority to 4

d) Calls the HAL_Msplnit() callback function defined in user file
stm32f7xx_hal_msp.c to do the global low level hardware initialization

3

DocID027808 Rev 3

UM1891 Getting started
Configure the system clock: the system clock configuration is done by calling these
two APls
a) HAL_RCC_OscConfig(): configures the internal and/or external oscillators, PLL

source and factors. The user may select to configure one oscillator or all
oscillators. The PLL configuration can be skipped if there is no need to run the
system at high frequency

b) HAL_RCC_ClockConfig(): configures the system clock source, Flash latency and
AHB and APB prescalers

Peripheral initialization

a) Start by writing the peripheral HAL_PPP_Msplnit function. For this function,
proceed as follows:

— Enable the peripheral clock.

— Configure the peripheral GPIOs.

— Configure DMA channel and enable DMA interrupt (if needed).

— Enable peripheral interrupt (if needed).

b) Edit the stm32f7xx_it.c to call the required interrupt handlers (peripheral and
DMA), if needed.

c) Write process complete callback functions if you plan to use peripheral interrupt or
DMA.

d) In your main.c file, initialize the peripheral handle structure, then call the function
HAL_PPP_lInit() to initialize your peripheral.

Develop your application process: at this stage, your system is ready and you can

start developing your application code.

a) The HAL provides intuitive and ready-to-use APIs for configuring the peripheral,
and supports polling, interrupt and DMA programming models, to accommodate
any application requirements. For more details on how to use each peripheral,
refer to the rich examples set provided.

b) If your application has some real-time constraints, you can find a large set of
examples showing how to use FreeRTOS and integrate it with all middleware
stacks provided in STM32CubeF7, it can be a good starting point for your
development.

Note: In the default HAL implementation, the SysTick timer is the timebase source. It is used to

3

generate interrupts at regular time intervals. If HAL_Delay() is called from peripheral ISR
process, the SysTick interrupt must have higher priority (numerically lower) than the
peripheral interrupt. Otherwise, the caller ISR process is blocked. Functions affecting
timebase configurations are declared as __Weak to make override possible in case of other
implementations in user file (using a general purpose timer for example or other time
source). For more details please refer to HAL_TimeBase example.

DocID027808 Rev 3 17/21

Getting started UM1891

4.3

4.4

441

18/21

Using STM32CubeMX to generate the initialization C code

An alternative to steps 1 to 6 described in Section 4.2 consists in using the STM32CubeMX
tool to easily generate code for the initialization of the system, the peripherals and
middleware (steps 1 to 6 above) through a step-by-step process:

1. Select the STMicroelectronics STM32 microcontroller that matches the required set of
peripherals.

2. Configure each required embedded software thanks to a pinout-conflict solver, a clock-
tree setting helper, a power consumption calculator, and an utility performing MCU
peripheral configuration (GPIO, USART...) and middleware stacks (USB, TCP/IP...).

3. Generate the initialization C code based on the configuration selected. This code is
ready to be used within several development environments. The user code is kept at
the next code generation.

For more information, please refer to “STM32CubeMX for STM32 configuration and
initialization C code generation” user manual (UM1718).

Getting STM32CubeF7 release updates

The STM32CubeF7 firmware package comes with an updater utility: STM32CubeUpdater,
also available as a menu within STM32CubeMX code generation tool.

The updater solution detects new firmware releases and patches available on www.st.com
and proposes to download them to the user’s computer.

Installing and running the STM32CubeUpdater program
e Double-click SetupSTM32CubeUpdater.exe file to launch the installation.
e Accept the license terms and follow the different installation steps.

Upon successful installation, STM32CubeUpdater becomes available as an
STMicroelectronics program under Program Files and is automatically launched.

The STM32CubeUpdater icon appears in the system tray:

e Right-click the updater icon and select Updater Settings to configure the Updater

connection and to perform manual or automatic checks. For more details on Updater
configuration, refer to section 3 of the STM32CubeMX User manual (UM1718).

3

DocID027808 Rev 3

UM1891

FAQ

5

3

FAQ

What is the license scheme for the STM32CubeF7 firmware?
The HAL is distributed under a non-restrictive BSD (Berkeley Software Distribution) license.

The middleware stacks made by ST (USB Host and Device Libraries, STemWin) come with
a licensing model allowing easy reuse, provided it runs on an ST device.

The middleware based on well-known open-source solutions (FreeRTOS, FatFs, LwIP and
PolarSSL) have user-friendly license terms. For more details, refer to the license agreement
of each middleware.

What boards are supported by the STM32CubeF7 firmware package?

The STM32CubeF7 firmware package provides BSP drivers and ready-to-use examples for
the following STM32F7 boards: STM327x6G_EVAL, STM32F746G-Discovery and
STM32F746ZG-Nucleo.

Does the HAL take benefit from interrupts or DMA? How can this be
controlled?

Yes. The HAL supports three API programming models: polling, interrupt and DMA (with or
without interrupt generation).

Are any examples provided with the ready-to-use toolset projects?

Yes. STM32CubeF7 provides a rich set of examples and applications (around 150 for
STM327x6G_EVAL). They come with the preconfigured project of several toolsets: IAR, Keil
and GCC.

How are the product/peripheral specific features managed?

The HAL offers extended APIs, i.e. specific functions as add-ons to the common API to
support features available on some products/lines only.

How can STM32CubeMX generate code based on embedded software?

STM32CubeMX has a built-in knowledge of STM32 microcontrollers, including their
peripherals and software. This enables the tool to provide a graphical representation to the
user and generate *.h/*.c files based on user configuration.

How to get regular updates on the latest STM32CubeF7 firmware releases?

The STM32CubeF7 firmware package comes with an updater utility, STM32CubeUpdater,
that can be configured for automatic or on-demand checks for new firmware package
updates (new releases or/and patches).

STM32CubeUpdater is integrated as well within the STM32CubeMX tool. When using this
tool for STM32F7 configuration and initialization C code generation, the user can benefit
from STM32CubeMX self-updates as well as STM32CubeF7 firmware package updates.

For more details, refer to Section 4.4.

DocID027808 Rev 3 19/21

Revision history

UM1891

6

20/21

Revision history

Table 4. Document revision history

Date

Revision

Changes

30-Apr-2015

1

Initial release.

12-Nov-2015

Updated Table 2: Evaluation and discovery boards for STM32F7
Series title and adding 2 new rows for STM32F746G-Discovery
and STM32F746ZG-Nucleo boards.

Updated Table 3: Number of examples available for each board
application number at 61 instead of 58 and adding 2 new rows
for STM32F746G-Discovery and STM32F746ZG-Nucleo boards.
Updated Figure 1: STM32CubeF7 firmware components.
Updated Section 5: FAQ 2nd question about the boards
supported by STM32CubeF7 firmware package, adding
STM32F746G-Discovery and STM32F746ZG-Nucleo boards.

21-Apr-2016

Updated Table 1: Macros for STM32F7 Series adding rows for
STM32F76xxx and STM32F77xxx devices.

Updated Table 2: Evaluation and discovery boards for STM32F7
Series adding new boards and note 2.

Updated Table 3: Number of examples available for each board.

3

DocID027808 Rev 3

UM1891

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics — All rights reserved

3

DocID027808 Rev 3 21/21

	1 STM32CubeF7 main features
	Figure 1. STM32CubeF7 firmware components

	2 STM32CubeF7 architecture overview
	Figure 2. STM32CubeF7 firmware architecture

	3 STM32CubeF7 firmware package overview
	3.1 Supported STM32F7 Series devices and hardware
	Table 1. Macros for STM32F7 Series
	Table 2. Evaluation and discovery boards for STM32F7 Series

	3.2 Firmware package overview
	Figure 3. STM32CubeF7 firmware package structure
	Table 3. Number of examples available for each board
	Figure 4. STM32CubeF7 example overview

	4 Getting started
	4.1 Running your first example
	4.2 Developing your own application
	4.3 Using STM32CubeMX to generate the initialization C code
	4.4 Getting STM32CubeF7 release updates
	4.4.1 Installing and running the STM32CubeUpdater program

	5 FAQ
	6 Revision history
	Table 4. Document revision history

