‹Kopfzeile›
‹Datum/Uhrzeit›
‹Fußzeile›
‹Nr.›
Klicken Sie,  um die Formate des Vorlagentextes zu bearbeiten
Zweite Ebene
Dritte Ebene
Vierte Ebene
Fünfte Ebene
1.CPU-Sockel
2.Intel 440BX AGPset
3.2 DIMM Dual Inline Memory Module Sockel
4.Primary, Secondary IDE Connectors
5.DIP-Switches
6.ATX Power Connector
7.Programmable Flash EEPROM
8.Serial COM2 Header
9.Multi I/O Chip
10.Floppy Disk Drive Connector
11.Intel PIIX4E PCIset
12.TI 1394 Link Layer Chip
13.ASIS ASIC with hardware monitor
14.Accelerated Graphics Port
15.Wake-On-Ring Connector
16.Wake-On-LAN Connector
17.3 PCI Slots
18.Aureal 3D PCI Audio optional
19.AC`97 V2.1 Audio CODEC
20.TI 1394 Physical Layer Chip
21.T: Joystick/MIDI Connector
 B: Line Out, Line In, Microphone In Connectors
22.IEEE-1394 Headers (channels 2&3)
23.IEEE-1394 Conector (channel 1)
24.Parallel Port Connector
25.Serial Port Connector
26.2 USB Connectors
27.T: PS/2 Mouse Connector
 B: PS/2 Keyboard Connector
28.
28.
28.
A Revolution in Chipset Technology
The 820 chipset supports the RDRAM* memory technology, 133-MHz system bus, and delivers significant graphics performance enhancements through the 4X capability of the AGP 2.0 Interface Specification. The 82820 Memory Controller Hub (MCH) provides the CPU interface, DRAM interface, and AGP interface in the 820 chipset platform. The MCH supports a single processor (82820) or two processors with up to 1 GB of memory (82820DP).

The 82801 I/O Controller Hub (ICH) utilizes Intel® Accelerated Hub Architecture to make a direct connection from the graphics and memory to the integrated AC97 controller, the ATA66 controller, dual USB ports, and PCI add-in cards.

The 82802 Firmware Hub (FWH) stores system BIOS and video BIOS, as well as the Intel® Random Number Generator (RNG). The Intel RNG provides truly random numbers to enable stronger encryption, digital signing, and security protocols. This baseline security is provided across Intel's entire 800 chipset series product line.
Fast floating-point performance smooths the drawing of 3D meshes and animation effects and adds depth complexity to the scene. The next step is to add lifelike realism and depth. To do this, the PC must render the 3D images by adding textures, alpha-blended transparencies, texture-mapping lighting, and other effects. AGP technology accelerates graphics performance by providing a dedicated high-speed port for the movement of large blocks of 3D texture data between the PC's graphics controller and system memory.

Scaling to Even Higher Bandwidth
The AGP interface, positioned between the PC's chipset and graphics controller, significantly increases the bandwidth available to a graphics accelerator (current peak bandwidth is 528 MB/s). AGP lays a scalable foundation for high-performance graphics in future systems, with support for a peak bandwidth over 1 GB/s.

Today's 3D applications have a huge appetite for memory bandwidth. By providing a high memory bandwidth "fast lane" for graphics data, AGP enables the hardware-accelerated graphics controller to execute texture maps directly from system memory, instead of caching them in the relatively limited local video memory. It also helps speed the flow of decoded video from the CPU to the graphics controller.

3D applications will also run faster when the need to pre-fetch and cache textures in local video memory is eliminated.

By minimizing the need for video memory, AGP helps developers control the costs of new designs. Removing video traffic from the PCI bus also delivers better stability.

Boost Your AGP Learning Curve
Take a few moments to explore AGP technology in our AGP Tutorial. It outlines what you need to know about PCs and software applications optimized for AGP.

Hardware developers who need to drill down deeper can download the AGP Interface Specification version 2.0 and the latest engineering revisions. Further detailed information on electromechanical implementation issues and thermal design guidelines is available in the newly updated AGP Platform Design Guide revision 1.1.
The AMD-750™ chipset consists of two physical devices: the AMD-751™ system controller and the AMD-756™ peripheral bus controller. The key features of the AMD-751 system controller are: Support for the AMD Athlon system bus interface, the first 200-MHz system bus for x86 system platforms System logic architecture optimized for the seventh-generation AMD Athlon processor
PCI 2.2 compliant bus interface with support for 6 PCI masters
Support for up to 768MB of PC-100 SDRAM DIMM memory
Compliant with AGP 2.0 specs for 1x and 2x AGP modes
Optimized to deliver enhanced AMD Athlon system performance The key features of the AMD-756 peripheral bus controller are:
Enhanced master mode IDE controller with Ultra DMA-33/66 support
Support for Plug-n-Play, ACPI 1.0 and APM 1.2 power management standards
PC97-compliant PCI to ISA bridge and integrated ISA bus controller
Integrated OHCI-compliant USB controller with root hub and four ports
Support for legacy style mouse/keyboard controller
ACPI, eine Gemeinschaftsentwicklung von Intel, Microsoft und Toshiba, wurde am 6. Januar 1997 vorgestellt (in Englisch). Es handelt sich um eine offene (von jedem Hersteller verwendbare) und umfassende Schnittstellenspezifikation für den Informationsaustausch zwischen PC-Hardware, Betriebssystem und Peripheriegeräten. Die Spezifikation legt also ein Format fest, in dem Betriebssystem, Motherboard-Hardware und Peripheriegeräte (CD-ROM-Laufwerke, Festplatten usw.) gegenseitig Daten über den Energieverbrauch austauschen können. Das Hauptziel von ACPI ist, das Operating System Directed Power Management (OSPM) zu ermöglichen, bei dem das Betriebssystem Zugriff auf alle Power-Management-Funktionen hat und damit den Energieverbrauch der einzelnen Geräte präzise an den jeweiligen Bedarf anpassen kann. Ältere Power-Management-Systeme wurden über das BIOS gesteuert und konnten Geräte nur schematisch nach einer bestimmten Zeit der Inaktivität abschalten. Systeme mit ACPI werden mit ihren überragenden Power-Management-Verfahren nun auf dem Markt verfügbar sein. Verbesserungen ergeben sich dabei durch ein hochentwickeltes Power-Management für das gesamte System: Betriebssystem, Motherboard-Hardware und Peripheriekomponenten. Intel bietet zur Unterstützung der Entwicklung hochleistungsfähiger, umfassend ausgestatteter und energieeffizienter Systeme Tools (in Englisch) und Leitlinien an. Der Einsatz dieser Tools gestattet Systemherstellern, das Power-Management für Systemkomponenten und Anwendersoftware zu testen. Automating Internet updates or system-maintenance utilities. An Internet application can schedule times to turn on the PC so the application can download information from the Internet without user attendance. Management applications can schedule off-peak times to wake the PC to run activities such as software downloading, backup, or maintenance. Such applications can use the OnNow extension APIs to inform the operating system when activities are complete so that the PC can be immediately put back to sleep. Handling docking changes for mobile users. Consider the following scenario: You are working on a file stored on the network or on a disk in a docking station. But you're late for a flight, so you put the PC to sleep, undock, and leave. Later, at home or in your hotel room, you turn on the PC. If the application is not OnNow-aware, it might hang or fault when it tries to access the file. By handling the sleep and wake events, the application can smoothly manage the situation by telling the user what happened and offering to save the work to another location until the original volume is available. Preserving network connections. This scenario is similar to the docking scenario: When the PC goes to sleep, network connections on the server are lost, files are closed, and file locks are freed. An OnNow-aware application can automatically handle this by performing a local auto-save when the system goes to sleep. When the system wakes, the application can re-establish its connection and silently allow the user to continue working. Keeping presentations online. Every presenter has seen a laptop turn off or go blank in the middle of a presentation. While a slide is being displayed, the PC perceives itself to be idle, as if the user has left it alone; no CPU is needed and no user input is coming in. An OnNow-aware application tells the operating system that the PC is being used, thus preventing the screen or PC from turning off. Extending mobile battery life. Battery life is essential to laptops. The application's use of the CPU and hard disk drastically affects battery life. Performing non-essential background tasks in the idle loop prevents the CPU from entering a low power state. By taking advantage of OnNow capabilities, an application can find out whether the PC is running on batteries and, if so, can turn off some of the application background tasks. Further, an application can postpone low-priority disk I/O to be performed only when the hard drive is running. Handling events for network agents and peripherals. Both network agents and applications for peripherals such as fax machines can deliver continuous functionality (24 hours per day, months at a time) without requiring the PC to run at full power to execute tasks when events occur.
USB "Universal Serial Bus"
dt.: universeller, serieller (Daten-)Bus
Der Universal Serial Bus ist ein Anschluß (Port) für periphere Geräte (wie Maus, Modem, Drucker, Tastatur, Scanner) an den Computer. Bis zu 127 Geräte können an einen einzigen USB-Port angeschlossen werden. Die Übertragungsrate des USB beträgt derzeit (Version 1.1) 12 Mbit/s, der Standard USB 2.0 (für 2. Halbjahr 2000 angekündigt) soll einen Datentransfer bis zu 480 Mbit/s ermöglichen. Peripherie-Geräte können an den USB sogar bei laufendem Computer-Betrieb angeschlossen und sofort genutzt werden. Der Rechner braucht nicht zuvor erst neu konfiguriert und gestartet zu werden ("Plug and Play").
Firewire, auch bekannt unter dem Namen IEEE 1394, ist ein Hochgeschwindigkeits-Bus, der bis zu 400 MBit Daten pro Sekunde transportiert. Die grundlegende Technik ist sowohl zu Apple-Macintosh-Rechnern als auch zu PCs kompatibel. Sie ermöglicht den Anschluß von Peripheriegeräten wie Stereoanlagen, externen Festplatten oder anderen Rechnern, ohne daß ein Treiber installiert werden muß. Die Firewire-Technik war 1995 von Apple entwickelt worden.