

Lösung WS 2008

Prüfung:	Informationstechnik MT 7D51
Termin:	Mittwoch, 3. Dezember 2008
	10:00 - 11:30 / 12:00 (Diplom)

Prüfer: Prof. J. Walter

Hilfsmittel: beliebig / kein Internet / kein WLAN

Name:	
Vorname:	
Projekt:	
Stick:	
PC:	

bitte keine rote Farbe verwenden

(nicht ausfüllen)!

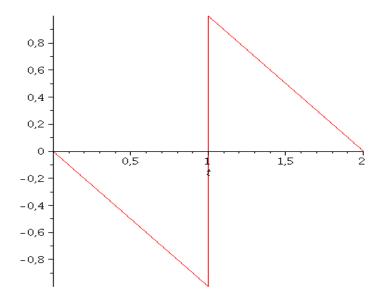
Aufgabe	mögl. Punkte	erreichte Punkte
1 B+D	B:16 - D:13	
2 B+D	B:16 - D:13	
3 B+D	B:18 - D:13	
4 D	Nur Diplom D:7	
5 D	Nur Diplom D:4	
	B: Bachelor	
	D: Diplom	
Gesamt	53	
	Note	

Bearbeiten Sie die Aufgaben nur, falls Sie keine gesundheitlichen Beschwerden haben.

Viel Erfolg

Bemerkung:

Sie können die Vorder- und Rückseite benutzten. Es werden nur die auf den Prüfungsblättern vorhandenen oder fest mit den Prüfungsblättern verbundenen Ergebnisse gewertet.


Schreiben Sie nur den Ansatz und das Ergebnis/Skizze auf die Blätter. Die gesamte Lösung erstellen Sie auf dem Stick in den Ordnern: A1_Nachname, A2_Nachname, A3_Nachname, A4_Nachname

Mit Abgabe dieser Arbeit bestätigen Sie das Löschen von HPVEE "Classroom-Lizenz" und Maple 12 auf ihrem PC.

WICHTIG: IN JEDER LÖSUNG MUSS AM ANFANG: NAME + MATR.-NR. STEHEN!

1. Gauß'sches Prinzip der kleinsten Fehlerquadrate (12/16B Punkte)

Die nachfolgende Funktion D1:

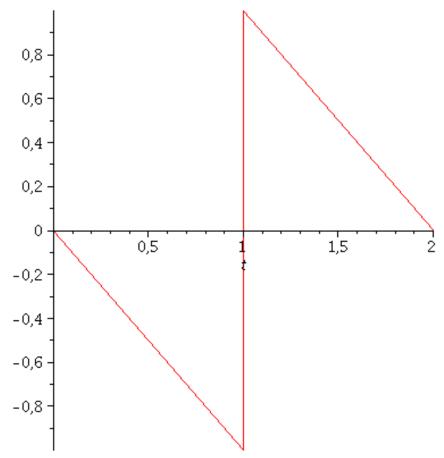
Abbildung 1: Funktion D1

soll im Bereich $0 \le t \le 2.0$ optimal durch die Funktion $y := a + b * \sin(Pi * t) + c * \sin(2 * Pi * t)$ angenähert werden.

- a) 8P Bestimmen Sie die Funktion. Hinweis: Plotten Sie die Funktion D1
- b) 2P Skizzieren Sie das Ergebnis.
- c) 2P Um welche-r/n Stelle/n tritt die größte Abweichung auf?

Lösung:

> plot(D1, t = 0..2);


```
>> restart

> D1 := -t^* (Heaviside (t) - Heaviside (t-1)) - (t-2)

* (Heaviside (t-1) - Heaviside (t-2));

D1 := -t \text{ (Heaviside } (t) - \text{Heaviside } (t-1)) - (t-2)
-2) \text{ (Heaviside } (t-1) - \text{Heaviside } (t-2))
```

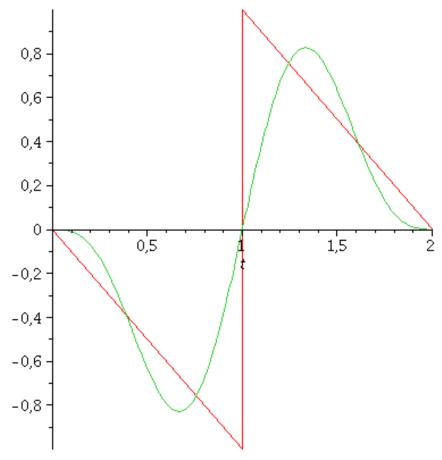

> $y := a + b*\sin(Pi*t) + c*\sin(2*Pi*t);$

$$y := a + b \sin(\pi t) + c \sin(2 \pi t)$$

>
$$dSa := diff(int((y-D1)^2, t = 0..2), a);$$

$$dSa := \frac{1}{3} \frac{-6 \ b - 3 \ c + 12 \ a \ \pi}{\pi} + \frac{c + 2 \ b}{\pi}$$

>
$$dSb := diff(int((y-D1)^2, t = 0..2), b);$$


$$dSb := \frac{1}{3} \frac{-6 \ a + 6 \ b \ \pi + 12}{\pi} + \frac{2 \ a}{\pi}$$

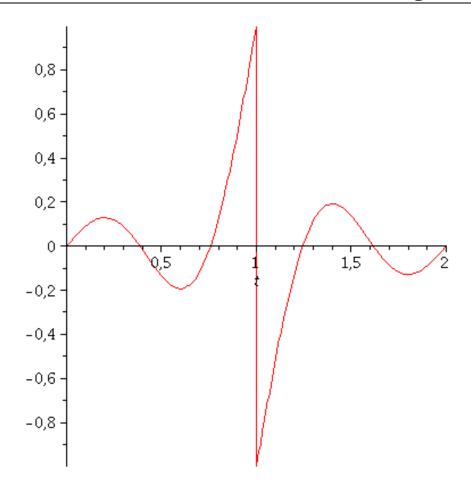
$$dSc := diff(int((y-D1)^2, t = 0..2), c);$$
$$dSc := \frac{1}{3} \frac{-6 + 6 c \pi - 3 a}{\pi} + \frac{a}{\pi}$$

$$dSc := \frac{\pi}{3} \frac{\pi}{\pi}$$
> solve({dSa, dSb, dSc}, {a, b, c});
$$\left\{ a = 0, b = -\frac{2}{\pi}, c = \frac{1}{\pi} \right\}$$

>
$$y1 := (-2/Pi)*\sin(Pi*t) + 0 + (1/Pi)*\sin(2*Pi*t);$$

 $y1 := -\frac{2\sin(\pi t)}{\pi} + \frac{\sin(2\pi t)}{\pi}$

> plot([D1, y1], t = 0..2);


 \rightarrow AB := y1-D1;

$$AB := -\frac{2\sin(\pi t)}{\pi} + \frac{\sin(2\pi t)}{\pi} + t \text{ (Heaviside } (t)$$

$$- \text{ Heaviside } (t-1)) + (t-2) \text{ (Heaviside } (t-1)$$

$$- \text{ Heaviside } (t-2))$$

> plot(AB, t = 0..2);

An der / um Stelle t=1 tritt die größte Abweichung auf.

2. DFT (12/16B Punkte)

Die Funktion

$$y1 := -\frac{2\sin(\pi t)}{\pi} + \frac{\sin(2\pi t)}{\pi}$$

Wird mit der Abtastfrequenz von 4 Hz mit der Blockgröße N=8 abgetastet.

- a) 1P Tragen Sie die Zeitwerte für die Abtastpunkte in die nachfolgende Tabelle ein.
- b) 1P Tragen Sie die Amplitudenwerte der Funktion in die Tabelle ein.
- c) 1P Skizzieren Sie die Funktion und deren Abtastwerte.
- d) 6P Berechnen Sie für die Funktion aus den Abtastwerten jeweils die skalierte DFT für m=0, m=1, m=2, m=3, m=4. Bitte mit Angabe der Formel!!!
- e) 1P Zeichnen Sie das Amplitudenspektrum der skalierten DFT für die Funktion.
- f) Wie kann die Aufgabe d durch Überlegung überprüft werden?

Lösung a) und b)

n=	t/s	f[n]	
0	0	0	
1	0,25	-0,132	
2	0,5	-0,637	
3	0,75	-0,768	
4	1	0	
5	1,25	0,768	
6	1,5	0,637	
7	1,75	0,132	
8			
9			

Bemerkung: Blockgröße N=8 DFT wird aus 8 Punkten berechnet!

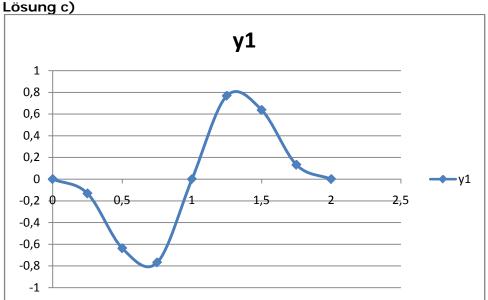


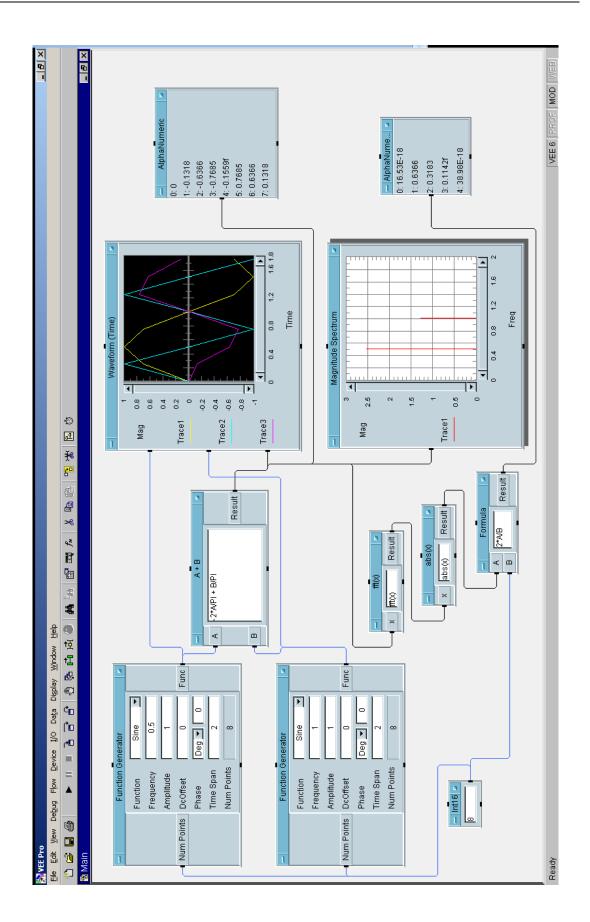
Abb.: Funktion y1 und deren Abtastwerte

Lösung WS 2008

Lösung d)

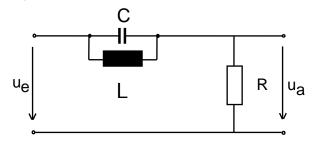
$$|s_m| = 2 * \left| \frac{1}{N} \sum_{n=0}^{N-1} f[n] * \left[\cos \frac{2\pi mn}{N} - j \sin \frac{2\pi mn}{N} \right] \right|$$

m0 =	m1=	m2=	m3=	m4=	
0	0,6366	0,3183	0,0	0,0	


Lösung e)

Der Betrag des Mittelwertes bei der abgetasteten Funktion ist 0. Muss gesondert berechnet werden. (skalierte DFT)

Lösung f)


Der Amplitudenwert der Grundschwingung ist 2/PI. Der Amplitudenwert der 2. Harmonischen Schwingung ist 1/PI. Die Ergebnisse können direkt aus der Funktion abgelesen werden.

3. DGL - Übertragungsfunktion - Systemantwort (15/18B Punkte)

Gegeben ist ein Hochpass:

Schaltung mit R L und C

- a) (3P) Erstellen Sie die Übertragungsfunktion G1(s)
- b) (1P) Erstellen Sie die Übertragungsfunktion G₂ (s) für die Werte R=1, C=1, L=1 Darstellung: Die höchste Potenz im Nenner hat den Faktor 1.

(10P) Bestimmen Sie die Antwort y(t) des Systems G2 (s) auf die Eingangsfunktion:

 $D1 := -t^*(Heaviside(t)-Heaviside(t-1))-(t-2)^*(Heaviside(t-1)-Heaviside(t-2))$

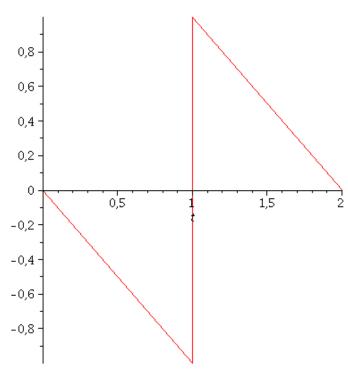
Hinweis: Schreiben Sie den Ansatz für Maple auf. Als Ergebnis genügt die Skizze. Das Ergebnis ist etwas umfangreicher. Skizzieren Sie die Eingangsfunktion.

c) (2P) Skizzieren Sie Antwort für t=0 bis t=10.

Lösung Aufgabe 3a

$$G1 = \frac{R}{R + L||C} = \frac{R}{R + \frac{sL \times \frac{1}{sC}}{sL + \frac{1}{sC}}} = \frac{R \times (sL + \frac{1}{sC})}{R \times (sL + \frac{1}{sC}) + \frac{sL \times \frac{1}{sC}}{1}} = \frac{RLCs^2 + 1}{RLCs^2 + Ls + 1} = \frac{RLCs^2 + 1}{RLCs^2 + 1} = \frac{RLCs^2 +$$

Lösung Aufgabe 3b


$$G2 = \frac{s^2 + 1}{s^2 + s + 1}$$

- > restart
- > $x := -t^*$ (Heaviside (t) -Heaviside (t-1)) (t-2)* (Heaviside (t-1) -Heaviside (t-2));

$$x := -t$$
 (Heaviside (t) – Heaviside $(t-1)$) – $(t-2)$ (Heaviside $(t-1)$ – Heaviside $(t-2)$)

> plot(x, t = 0..2)

>
$$G2 := \frac{(s^2 + 1)}{s^2 + s + 1}$$

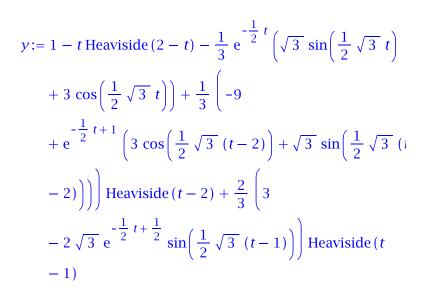
$$G2 := \frac{s^2 + 1}{s^2 + s + 1}$$

> with(inttrans);

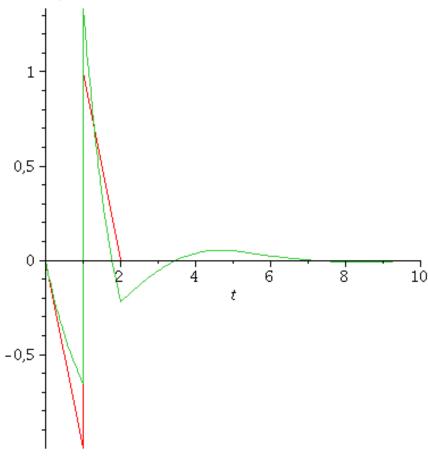
[addtable, fourier, fouriercos, fouriersin, hankel, hilbert, invfourier, invhilbert, invlaplace, invmellin, laplace, mellin, savetable]

> X := laplace(x, t, s);

$$X := \frac{2 e^{-s}}{s} - \frac{1 - e^{-2 s}}{s^2}$$


 $Y := X \cdot G2$

$$Y := \frac{\left(\frac{2 e^{-s}}{s} - \frac{1 - e^{-2 s}}{s^2}\right) (s^2 + 1)}{s^2 + s + 1}$$


> y := invlaplace(Y, s, t);

> plot([x, y], t = 0..10)

4 Faltung

Die beiden nachfolgenden Signale: Ein Rechteckimpuls und eine – Rampe werden gefaltet.

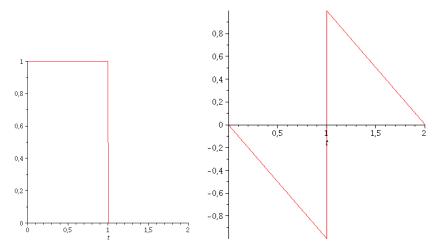


Abb: Zwei Signale

a) Skizieren Sie das Ergebnis

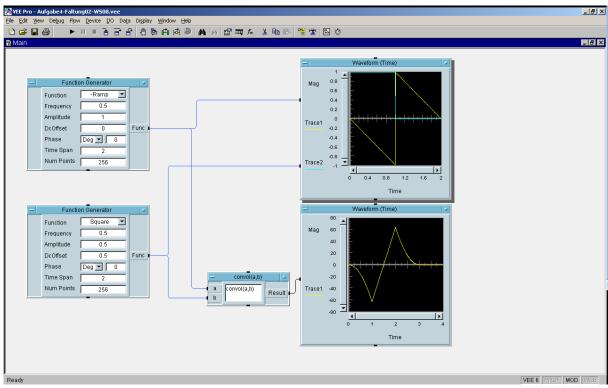


Abb.: Faltung mit HP VEE gelöst

5. HIT Human Information Technology (4 Punkte)

Aufgrund des Sehfeldes von Menschen wurde das Seitenverhältnis bei Fernsehern auf 16/9 geändert. Kameras arbeiten mit 1440x1080 nicht quadratischen Pixeln. Welches Seitenverhältnis Breite: Höhe hat ein Kamerapixel.

Lösung A5

Breite: Höhe=1,33:1=4:3

1440*1,3333....=1920

HDTV→ 1920 x 1080