

SS 2011

Prüfung:	Informationstechnik MT	7D5 1
----------	------------------------	--------------

Termin: Mittwoch, 20.5. 2011

10:00 - 11:30

Prüfer: Prof. J. Walter

Hilfsmittel: beliebig / kein Internet / kein WLAN

Name:	- <u></u>
Vorname:	
Projekt:	
Stick:	
PC:	

bitte keine rote Farbe verwenden

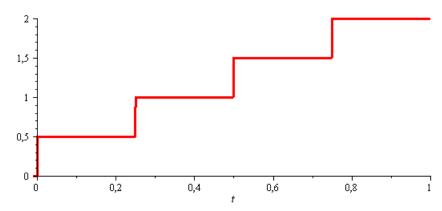
(nicht ausfüllen)!

Aufgabe	mögl. Punkte	erreichte Punkte
1	12	
2	12	
3	14	
4	8	
5	4	
Gesamt		
	Note	

Bearbeiten Sie die Aufgaben nur, falls Sie keine gesundheitlichen Beschwerden haben.

Viel Erfolg

Bemerkung: Löschen Sie zunächst den Stick und erstellen Sie einen Ordner mit ihrem Namen.


Sie können die Vorder- und Rückseite benutzten. Es werden die auf den Prüfungsblättern vorhandenen oder fest mit den Prüfungsblättern verbundenen Ergebnisse gewertet. Schreiben Sie nur den Ansatz und das Ergebnis/Skizze auf die Blätter. Die gesamte Lösung erstellen Sie auf dem Stick/Rechner in den Ordnern: INFO-SS11/A1_Nachname, A2_Nachname, A3_Nachname, A4_Nachname

Mit Abgabe dieser Arbeit bestätigen Sie das Löschen von HPVEE "Classroom-Lizenz" und Maple 12 auf ihrem PC.

WICHTIG: IN JEDER LÖSUNG MUSS AM ANFANG: NAME + MATR.-NR. STEHEN!

1. Gauß'sches Prinzip der kleinsten Fehlerquadrate

Die nachfolgende Funktion h(t):

Abbildung 1 Funktion h(t)

soll im Bereich $0 \le t \le \pi$ optimal durch die Funktion $g := a + b \cdot t$ angenähert werden.

Erzeugen Sie die Funktion h(t) mit Hilfe der Heaviside-Funktion.

- a) 8P Bestimmen Sie die Parameter der Funktion g(t). Plotten Sie die Funktion g(t) und h(t)
- b) 2P Skizzieren Sie das Ergebnis.
- c) 2P Um welche-r/n Stelle/n tritt die größte Abweichung auf?

2. DFT

Die Funktion:

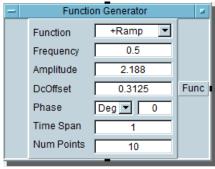


Abbildung 2: Funktion h(t)

Wird in HP VEE analysiert.

- a) (6P) Ermitteln Sie die Amplituden der 5 harmonischen Schwingungen mit der skalierten DFT.
- b) Ermitteln Sie die Amplituden der 5 harmonischen Schwingungen mit einem Hanning-Fenster

3. DGL - Übertragungsfunktion - Systemantwort

Erstellen Sie für die nachfolgende Schaltung die Übertragungsfunktion.

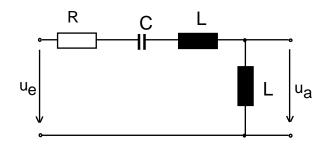
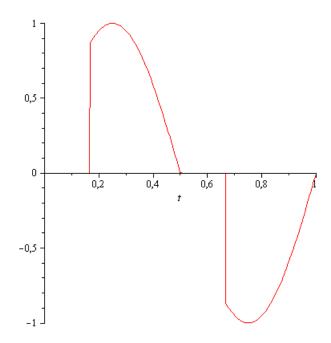



Abbildung 3 Schaltung mit R,C und L

- a) 3P Erstellen Sie die Übertragungsfunktion G1(s) Darstellung: Die höchste Potenz im Nenner hat den Faktor 1.
- b) 1P Erstellen Sie die Übertragungsfunktion G(s) für die normierten Werte R=1, C=1, L=1. Darstellung: Die höchste Potenz im Nenner hat den Faktor 1
- c) 6P Bestimmen Sie die Antwort y(t) auf die Funktion x(t) für die normierten Werte R=1, C=1, L=1.
- d) 2P Skizzieren Sie die Antwort.
- e) 2P Berechnen und skizzieren Sie die Übertragungsfunktion g(t) aus G(s).

Bestimmen Sie die Antwort y(t) des Systems G_2 (s) auf die Eingangsfunktion: x(t) Die Funktion entsteht durch eine Phasenanschnittsteuerung bei 60°.

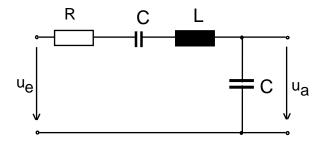


Abbildung Funktion x(t)

Hinweis: Schreiben Sie den Ansatz für Maple auf. Als Ergebnis genügt die Skizze. Das Ergebnis ist etwas umfangreicher. Skizzieren Sie Ausgangsfunktion y(t).

4 Systemantwort, Übertragungsfunktion (8 Punkte)

Ersetzen Sie in Aufgabe 3 L durch C und ermitteln Sie die Antwort auf das Eingangssignal der Aufgabe 3.

- a) Schreiben Sie den Ansatz für die normierte Übertragungsfunktion G(s)
- b) Skizzieren Sie die Antwort auf das Eingangssignal x(t)
- c) Erklären Sie den Unterschied von Ausgangssignal der Aufgabe 3 und Aufgabe 4.

5 Fragen zu den Laborarbeiten

Nennen Sie mindestens vier im Sommersemester angebotene Laborarbeiten.