

Informationstechnik

WS 2011

Prüfung:	Informationstechnik MT 7D51
Termin:	Mittwoch, 30. November 2011

9:30 - 11:00

Prüfer: Prof. J. Walter

Hilfsmittel: beliebig / kein Internet / kein WLAN

PC:		Stick:	Projekt:	Vorname:	Name:	
-	_	_	-	-	-	

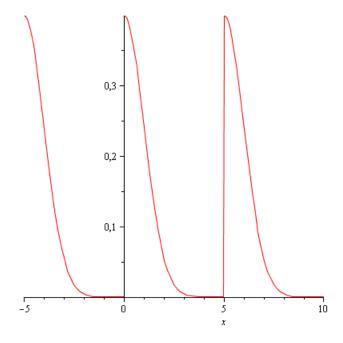
bitte keine rote Farbe verwenden

(nicht ausfüllen)!

Aufgabe	mögl. Punkte	erreichte Punkte
1	14	
2	12	
3	10	
4	14	
Gesamt	50	
	Note	

Bearbeiten Sie die Aufgaben nur, falls Sie keine gesundheitlichen Beschwerden haben.

Viel Erfolg


Bemerkung:

Sie können die Vorder- und Rückseite benutzten. Es werden nur die auf den Prüfungsblättern vorhandenen oder fest mit den Prüfungsblättern verbundenen Ergebnisse gewertet.

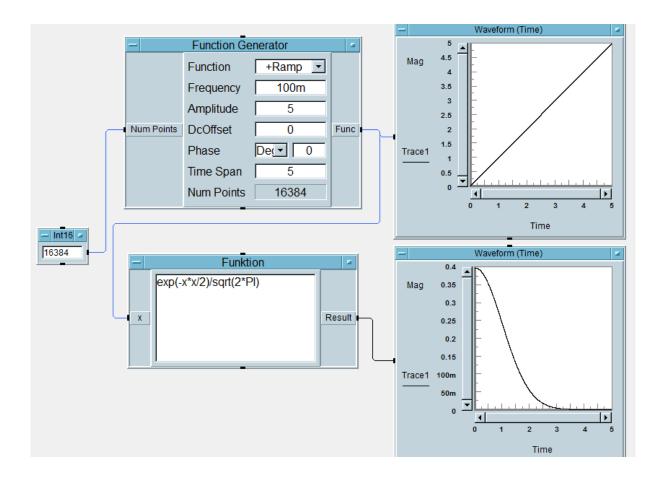
Mit Abgabe dieser Arbeit bestätigen Sie das Löschen von HPVEE "Classroom-Lizenz" auf ihrem PC.

1. Fourierreihe (14 Punkte)

Berechnen Sie für die periodische Funktion f die Fourierreihe:

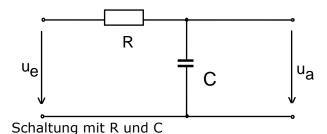
$$f := \frac{1}{2} \cdot \frac{e^{-\frac{1}{2}x^2} \sqrt{2}}{\sqrt{\pi}}$$

f ist periodisch und im Bereich $0 \le x < 5$ definiert.


a) Bestimmen Sie die Amplituden der ersten fünf Schwingungen und den Mittelwert.

Lösung:

2. DFT (12 Punkte)


- a) Berechnen Sie mit Hilfe von VEE die skalierte DFT der Funktion f aus Aufgabe 1. Es genügen der Mittelwert und die Amplituden bis zur 5. Schwingung.
- b) Wie ist der Zusammenhang zu Aufgabe 1?

HILFE: Die Funktion f lässt sich in VEE folgendermaßen erzeugen:

3. DGL - Übertragungsfunktion - Systemantwort (10 Punkte)

Gegeben ist ein Tiefpass:

- a) (1P) Erstellen Sie die Übertragungsfunktion G1(s)
- b) (1P) Erstellen Sie die Übertragungsfunktion G_2 (s) für die Werte R=1; C=1 Darstellung: Die höchste Potenz im Nenner hat den Faktor 1.

(10P) Bestimmen Sie die Antwort y(t) des Systems G_2 (s) auf die Eingangsfunktion:

t≥0

Hinweis: Schreiben Sie den Ansatz für Maple auf. Als Ergebnis genügt die Skizze. Das Ergebnis ist etwas umfangreicher. Skizzieren Sie die Eingangsfunktion.

c) (2P) Skizzieren Sie Eingangsfunktion und die Antwort für t=0 bis t=8.

Lösung Aufgabe 3a

Informationstechnik

4 FIR-Filter (14 Punkte)

An einem Motoren-Prüfstand wird ein akausaler FIR-Tiefpass mit der Grenzfrequenz 12kHz mit N=8 eingesetzt. Die Abtastfrequenz beträgt 48kHz.

a. Berechnen Sie die Filterkoeffizienten und skizzieren Sie das Ausgangssignal und das Eingangssignal:

-5	0
-4	0
-3	0,004
-2	0,054
-1	0,242
0	0,399
1	0,242
2	0,054
3	0,004
4	0
5	0

b. Verändern Sie die Grenzfrequenz auf 6kHz und vergleichen Sie die Ergebnisse.